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FOREWORD 

This  repor t  was prepared by the Astropower Laboratory,  Douglas 

Aircraf t  Company, Inc.  , under NASA Contract NAS 7-488. . I t  Covers the 

period from January 1 through March 31,  1967. 

by Chief, Research  SRT NASA Headquarters,  Code RRM, with Mr. W .  Raring 

as Pro jec t  Scientist.  This  report  was prepared by  Dr .  T.  L. Mackay and 

Dr .  C. B.  Gilpin under the direction of Dr .  N. A. Tiner .  Mr. R. G. Ingersoll ,  

Mr .  W .  A. Cannon, and Mr. S. M. Toy have greatly contributed to  the per -  

formance of this work. 

The work is adminis tered 

SM-49 105 -Q3 ii 



ABSTRACT 

Electron microautoradiograph studies of distribution of hydrogen by 

gas  adsorption in titanium alloys showed: 

Ti-13V-llCr-3Al alloy, (2)  a concentration of hydrogen in beta phase of 

Ti-8A1-1Mo-1V and Ti-6A1-4V alloys, and (3) a segregation of hydrogen at  

beta precipitates in alpha grain boundaries in Ti-5A1-2. 5Sn. 

(1) a uniform distribution in 

S t r e s s  corrosion tes t s  in distilled water  and in  3% NaCl aqueous soh-: 

tion a t  ambient temperature were made employing single edge notch specimens 

of Ti-5A1-2.5SnY Ti-6A1-4VY Ti-8A1-1Mo-1VY and Ti-13V-llCr-3Al.  The 

beta alloy, Ti-13V-11Cr-3AlY was the only mater ia l  which showed good 

resis tance to s t r e s s  corrosion cracking in these environments. 

microfractographs of s t r e s s  corrosion fractures  of alpha and alpha-beta 

alloys showed a mixture of cleavage and ductile dimple rupture.  

a r eas  were  la rger  in salt  solution tes ts .  

f r ac tu re s  of Ti-5Al-2.5Sn and Ti-6Al-4V show ~ beta phase does not exhibit 

ductility, and cleavage occurs  a t  the alpha-beta phase boundaries in the 

s t r e s s  corrosion fracture .  

beta phase appears to be  associated wlYh this local cleavage. 

Electron 

Cldavage 

(Prof i les  of the s t r e s s  corrosion 

The preferential segregation of hydrogen in  the 
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1 . 0  INTRODUCTION AND SUMMARY 

Titanium alloys a r e  found susceptible to s t r e s s  corrosion cracking a t  

ambient temperature  in aqueous solutions. 

spacecraft  and proposed supersonic transport  applications, and ve ry  little is 

known about the nature of susceptibility to s t r e s s  corrosion cracking. 

This may be  a serious problem in 

The objectives of this program a r e  to conduct a detailed l i terature  s u r -  

vey and to c a r r y  out an experimental program to define the microprocesses  in 

s t r e s s  corrosion failure of different titanium alloys at  ambient temperature in  

aqueous salt sblutions. The experimental methods used for these evaluations 

include (1) examination of stress corrosion cracked surfaces  by microfrac-  1 -  

tography, (2)  determination of preferential attack by t ransmission electron 

microscopy, (3 )  determination of the role of hydrogen, i f  any, by electron 

microautoradiography, and (4) evaluation of possible electrochemical reac-  

tions by potentiostatic measurements.  

mental  methods were developed previously in  other programs conducted by  

~ 

The techniques of using these experi-  

Astropower Laboratory on s t r e s s  corrosion cracking of high strength s teels .  (1) 

I 
~ 

~ 

The work reported during this quarterly period deals with the deter-  

mination of K 

evaluate their  susceptibility to s t r e s s  corrosion cracking. 

tographic studies were  made of the s t r e s s  corrosion fracture  faces to deter-  

mine c rack  propagation paths in  air and aqueous environments. Microauto- 

radiographic examination was completed of tr i t ium, introduced into titanium 

alloys by gas  adsorption at 725: to determine the preferential  retention of 

hydrogen in  the various phases present in titanium alloys. 

values for titanium alloys in air and aqueous solutions to 
C 

Electron f r a c -  

I 

1 



2 . 0  EXPERIMENTAL EVALUATIONS 

2. 1 Selected Alloy Sample Character is t ics  

The following titanium alloys were  selected for  detailed investi- 

gation of the mechanism of s t r e s s  corrosion cracking. 

1. Ti-5A1-2.5SnY all-alpha alloy 

2. Ti-6Al-4V, alpha-beta alloy 

3. Ti-8A1- 1Mo- lV, alpha-beta alloy 

4. Ti-13V’11Cr-3Aly all-beta alloy 

The chemical and physical propert ies  of these alloys 
reported previously. ( 2 )  

2. 2 Study of Hydrogen Distribution 

To study the distribution of hydrogen in the var ious titanium alloys 

selected and its role  in s t r e s s  corrosion cracking by electron microauto- 

radiography technique, the radioactive hydrogen (tri t ium) wa5 introduced into 

the alloy samples  by two methods: (1) gas adsorption a t  elevated tempera ture ,  

and (2)  cathodic charging. 

the second p rogres s  repor t . (2)  The resul ts  on gas adsorption of t r i t ium at 

elevated tempera tures  a r e  described here.  

The resu l t s  on cathodic charging a r e  descr ibed in 

Tr i t ium gas was introduced into each of the four titanium alloys 

~ 

employing a modified Sieverts  apparatus de signed and fabricated by Astropower 

Laboratory.  ‘The  apparatus,  a s  previously descr ibed,  is comprised of a fore-  

pump, two-stage mercu ry  diffusion pump, ion gage, McLeod gage, t r i t ium 

inlet sys tem,  and sample tubes.  

vacuum manifold f r o m  the diffusion pump. 

calibrated and covers  the p re s su re  range f rom 10 

was used only to  determine the ultimate vacuum obtainable in the :system during 

initial outgassing and pump down. 

sealed fri t ted g lass  disc  valve to admit the t r i t ium to the vacuum manifold. 

Individual samples  1 /4  inch by 1 inch were pickled in an aqueous solution of 

HN03-HF and placed in ver t ica l  Vycor tubes which were  attached to  the Pyrex  

manifold using graded sea ls .  

pumps by the mercu ry  cut-off,  the total volume of the manifold was  determined 

A mercury  cut-off is used to isolate the 

The McLeod gage i s  accurately 
-3 to 1 t o r r .  The ion gage 

The t r i t ium inlet system employs a mercury-  

With the manifold isolated from the vacuum 

SM-49105 -Q3 2 



by expanding a known pressure  of air (approximately 1 to r r )  f rom the known 

volume of the McLeod gage tube to the manifold. 

measured - with the McLeod gage - and the system volume calculated from 

gas law. 

The p res su re  was r e -  I 

In order  to  charge titanium alloys, the Vycor tubes containing 

an alloy sample were  heated to 725OC f 10°C, and held at  this temperature  

until a final steady state pressure  was attained in the entire system. 

specimen tube was then cooled to ambient temperature  and the final p ressure  

was measured. 

were charged. 

Table I. 

The 

The operation was repeated for  each alloy until all the samples 

The amount of tr i t ium introduced into each alloy is shown in 

The accuracy of the measurements by this technique is within 5%. 

Before describing resul ts ,  a brief description of the character is t ics  

of tr i t ium in titanium should be discussed 

halflife of 12.26 years .  

has  a maximum penetration in  titanium of 1450 angstroms. 

deeper in the metal. than 1450 angstroms will not be recorded on the emulsion. 

Fur thermore ,  since a beta  particle may emit in  any direction, this means that 

the minimum resolution is  1450 angstroms, i. e .  , any silver filament observed 

on the radiograph must  be within 1450 angstroms of the actual location of the 

t r i t ium atom that emitted the beta particle which caused that particular si lver 

filament . 

Tritium i s  a beta  emitter with a 

The beta particle has an energy of 0 .018  MeV and thus 

Thus all tr i t ium 

The electron microautoradiographs of titanium alloys charged 

with t r i t ium at  725OC were  prepared a s  follows: 

1. 

2 .  

3. 

4. 
5. 

6. 

7 .  

Ten angstroms of chromium were  shadowed a t  20 degrees.  
The chromium was placed on the specimen to act  a s  a shadow 
for  the direct  carbon replica. 

150 angstroms of carbon were  deposited onto the titanium for  
a direct  replica of the metal  surface.  

A monolayer of Kodak NTE nuclear t rack  emulsion was then 
placed on the surface. 

The specimens were  exposed for  16 hours. 

The emulsion was developed while on the specimen and fixed. 

The carbon replica and emulsion were  removed with ni t r ic  
acid and hydrofluoric acid. 

The autoradiograph was rinsed, dried,  and examined in the 
electron microscope. 

3 



Alloy 

Ti-5A1-2.5Sn 

Ti-6A1-4V 

Ti-8A1- 1Mo- 1V 

Ti-  13V - 1 1C r -3A. l  

TABLE I 

CONCENTRATION O F  TRITIUM IN TITANIUM ALLOYS 

C oncentr ation 
(PPn-4 

48 

41 

43 

43 
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l -  2 . 2 .  1 Observations on Ti-13V-l lCr-3Al Alloy 

Tr i t ium was evenly distributed throughout the lattice of 

this all-beta alloy. 

Figure 1 is a microautoradiograph showing distribution of t r i t ium in  two dif- 

ferent  beta  grains of Ti-13V- 11Cr-3A1 alloy. 

There was no apparent concentration at boundaries.  

The efficiency of the NTE emulsion was determined using 

this alloy because of the uniform distribution of t r i t ium in the beta  mat r ix .  

Using the maximum penetration of beta par t ic les  in titanium a s  1450 A ,  the 

efficiency of the emulsion was estimated as 40 to 50%. 

2 . 2 . 2  Observations on Ti-8Al-1Mo-lV and Ti-6A1-4V Alloys 

The t r i t ium distribution in Ti-8Al-1Mo-1V and Ti-6A1- 

Most of the t r i t ium was concentrated 4V alpha-beta alloys was ve ry  s imilar .  

in the beta  phase of these two alloys. 

experiment.  

Figures  2 and 3 show the resu l t s  of this 

2 , 2 . 3  Observations on Ti-5A1-2.5Sn Alloy 

Charging of 48 ppm of t r i t ium gas  at  725OC and subse-  

quent air quenching produced extensive cracking in  this alpha alloy as shown 

in Figure 4. Examination of the microstructure  of meta l  in the region of the 

c rack  showed that the f rac ture  was intergranular.  

vation showed precipitates a t  alpha grain boundaries following t r i t ium charging. 

A microautoradiograph of this alloy showed a uniform distribution of t r i t ium 

in the alpha gra ins ,  but a high concentration of t r i t ium at the precipitates.  

F igure  5 shows the resu l t s  of this experiment. 

Optical microscope obser-  

2 . 3  St re s s  Corrosion Cracking Tes t s  

The process  of s t r e s s  corrosion cracking in alloys usually com- 

mences as a pitting attack ra ther  than as uniform corrosion,  and in the general  

case, s t r e s s  corrosion does not initiate until a pit grows deep enough to act a s  

a s t r e s s  r a i s e r .  By inser t ing a fatigue c rack  in the specimen before com- 

mencing the t e s t ,  s t r e s s  corrosion can be  caused to initiate immediately upon 

application of sufficient s t r e s s .  

descr ibed quantitativ&ly’b;y the s t r e s s  intensity factor,  K. 

factor  at the point of c rack  instability is designated Kc. 

The s t r e s s  at the root of a c rack  can be 

The s t r e s s  intensity 

The advantages of 

S M- 49 1 0 5 -Q 3 5 
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Figure  1. Microautoradiograph of T r i t i um in  
Ti-3A1- 13V- 11Cr .  Magnification 
2 0 ,  ooox. 

I 
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( a )  8 ,  OOOX 
(b) 30,OOOX 

F i g u r e  2. Microautoradiographs of T r i t i u m  i n  Ti-8Al-  1Mo- 1V. 
T r i t i u m  i s  concentrated in be t a  phase.  

SM-49105-Q3 7 
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(a) 4 , 5 0 0 X  
(b)  15,500X 

F igure  3. Microautoradiograph of T r i t i um i n  Ti-6A1-4V. 
T r i t i u m  is concentrated in the be ta  phase .  

8 SM-49105-Q3 
I 
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Figure  4. Development of C r a c k s  in Ti-5A1-2.5Sn 
Due to Charging of 48 ppm T r i t i u m  a t  
725OC. Magnification 175X. 
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(b) 

(a )  6,OOOX 
(b)  30,OOOX 

F i g u r e  5 .  Microautoradiograph of T r i t i u m  i n  Ti-5A1-2. 5Sn. 
Tr i t i um i s  concentrated a t  be t a  precipi ta ted in 
alpha g ra in  boundarie s. 

SM-49105-Q3 10 
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I 

i 
i 
I 

I 

I 
I 

using a fatigue cracked specimen for testing for  s t r e s s  corrosion susceptibility 

a re :  

1. 

2. 

One can greatly shorten the t ime for testing. 

One can tes t  for s t ress  corrosion cracking in alloys which 
do not pit. 

One can descr ibe quantitatively the state of s t r e s s  a t  the 
initiation of s t r e s s  corrosion cracking whereas this would 
not be possible with a s t r e s s  r a i se r  in  the form of an ir- 
regular pit. 

3 .  

St re s s  corrosion tes ts  have been performed for the selected 

titanium alloys in 37'0 NaCl solution and disti l led water  at  ambient tempera-  

ture.  

used for these tes ts .  

at 1000 lb. 

c r ack  was observed with a s t e reo  microscope and the t ime of initiation of 

c rack  extension was measured with a stopwatch. 

The single-edge notch plate configuration previously d e ~ c r i b e d ' ~ )  was 

The load was increased in increments  of 40 lb start ing 

The load was held for five minutes at  each load level. The fatigue 

The s t r e s s  intensity factor,  
at c r ack  instability, Kc , was calculated using the following equation: (4) 

3 p2 - w [ 7.59 f$ - 32 ($7+117($) / 1 - v 2 ]  (1) 

where 

P =  

B =  
A =  

w =  

v =  

loqd 

thickness 

c rack  length 

width of specimen 

Po'i s sons ra t io  

The above procedure employs static loading and it i s  not possible 

to measu re  the cr i t ical  s t r e s s  intensity pa rame te r ,  KIC, by this technique. 

Step loading usually produces small  different KISCc'bhan loading several. speci-  

mens  to different K values.  However, i n  these experiments the purpose . 
is to study crack  propagation and the method of loading will not affect  the 

mechanism of propagation. 

C 

The initial fatigue crack length, a ,  in equation (1) was measured 

with a low power microscope following f rac ture  of the specimen, and was used 

11 



I .  

I .  to calculate K . 
in a 370 salt solution and in  distilled water for the titanium alloys tes ted,  is 

summarized in Table 11. 

The s t r e s s  intensity factor,  Kc, to  propagate a crack in a i r ,  
C 

Included in this table are a few specimens of Ti-5A1-2.5Sn which 

were  vacuum annealed 

remove the residual hydrogen. 

vacuum anneal showed 39 ppm and for 42 hour vacuum aneal showed 30 ppm. 

A hydrogen chemical analysis of as-received Ti-5A1-2.5Sn showed 61 ppm 

hydrogen. 

t o r r )  a t  1400OF for 24 hours and 42 hours to 

A hydrogen chemical analysis for  24 hour 

The reduction of s t r e s s  intensity factor,  Kc, by 370 salt  solution 

and by distilled water  at ambient temperature  when compared with values 

obtained in  argon o r  a i r  showed that all-alpha alloy Ti-5A1-2.5Sn and alpha- 

beta  alloys Ti-8AP-1Mo-1V and Ti-6A1-4V were susceptible to s t r e s s  cor-  

rosion cracking in these environments. The sodium chloride environment 

lowered the s t r e s s  intensity factor ,  Kc, to a much lower value than distilled 

water .  

corrosion cracking at ambient temperature in these environments. 

The  beta alloy, Ti-13V-llCr-3Al did not show susceptibility to s t r e s s  

The minimum value of the s t r e s s  factor to cause stress corrosion 

. This  threshold value can (5) 
cracking has  been designated by Brown as KISCC 
be  found by plotting s t r e s s  intensity factor, Kc, ve r sus  time-to-fracture. 

F igures  6 and 7 show resul ts  obtained for Ti-8Al-lMo-lV and Ti-5Al-2.5Sn 

in  370 salt  and distilled water a t  ambient temperature.  

fe rences  were  observed between s t r e s s  corrosion cracking in distilled water  

and 370 salt solution: 

c rack  propagation in distilled water than in 370 NaCl solution and (2)  the c rack  

propagation was much faster  in sal t  solution than in distilled water.  

Two significant dif- 

(1) a higher s t r e s s  intensity was required to initiate 

2 .4  Electron Fractography of Grack Propagation 

In o rde r  to define the mode of s t ress -cor ros ion  c rack  propagation, 

the f r ac tu re  faces and profiles of titanium alloy samples were examined by 

repl ica  techniques. 

plastic method. 

directly,  o r  after etching. The parlodion was allowed to  harden in place, stripped 

The method of replication consisted of the two-stage carbon- 

A 570 parlodion in  amyl acetate was applied on the fracture  face 

SM-49105 -Q3 12 



TABLE I1 

STRESS INTENSITY FACTOR, K,, FOR Ti-8A1- 1Mo- lV, Ti-6A1-4V, 
Ti-13V-l lCr-3Al AND Ti-5A1-2.5Sn IN 370 SALT SOLUTION 

AND DISTILLED WATER 

Alloy 

Ti-8A1- 1Mo- 1V 
1 1  

I I  

II 

1 1  

1 1  

I I  

1 1  

1 1  

1 1  

Ti-5A1-2.5Sn 
1 1  

1 1  

I 1  

1 1  

I 1  

I I  

1 1  

1 1  

1 1  

I I 

1 1  

1 1  

Ti-5A1-2, 5Sn 
(Vacuum Heat 
Treatment 24 hr) 

' I  42 hr 
1 1  

T i - 6A1- 4V 
1 1  

I I  

1 1  

1 1  

1 1  

1 1  

E nv i r onrn e n t 

Argon 
Argon 
370 Salt 
370 Salt 
370 Salt  
370 Salt 
Distilled W a t e r  
Distilled Water 
Distilled W a t e r  
Distilled W a t e r  

Ai r 
3%. Salt 
370 Salt 
3% Salt 
3o/a Salt 
370 Salt 
370 Salt 
Distilled W a t e r  
Distilled W a t e r  
Distilled W a t e r  
Distilled W a t e r  
Distilled Water 
Distilled Water 

Air 
370 Salt  

Air 
3yo Salt 

Air 
Air 
370 Salt 
3yo Salt 
370 Salt 
370 Salt  
370 Salt 

KC 
(K s i e n )  

43.7 
44. 8 
28 
25.2 
23.0 
18. 5 
36.6 
30.4 
2 4  
22 

129 
58.0 
48.3 
33 
40 
34.3 
33 
95 
82.5 
81 
71 
68.5 
64 

120 
27 

120 
30 

75.5 
75.5 
57 
48 
45 
44 
43 

Time to 
F r a c t u r e  

(min. ) 

- - 
0 . 6  
1 . 0  
1 . 0  
1 . 5  
1 . 1  
2 .2  
4 .0  
6 . 0  

2 .5  
2 . 0  
1 . 0  
2 .5  
1 .2  
2.5 
2.5 

3 . 0  
4 . 0  
4 . 0  
4 . 7  
6 . 0  

4. 6 

- - 
- 

2.5 

- - 
0 . 5  
2 .0  
2 .0  
2 .0  
3 . 0  

(Continued) 
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TABLE I1 (CONTINUED) 

STRESS INTENSITY FACTOR, K,, FOR Ti-8Al-lMo-lV, Ti-bAl-eV; I _ _  
Ti713V-11Cr-3A1 AND Ti-5A1-2.5Sn IN 370 SALT SOLUTION 

AND DIS T I LLE D W AT E R 

Allov 

T i  - 6A1-4V 
I f  

I I  

Ti-  13V - 1 1C r -3A1 
I 1  

1 1  

I 1  

1 1  

1 1  

Environment 

370 Salt 
Distilled Water 
Distilled Water 

Air 
370 Salt 
3% Salt 
3% Salt 
Distilled Water 
Distilled W a t e r  

K 
( K s i k )  

42 
71. 5 
71. 5 

101 
95.2 
90 
85 .2  
97.4 
92 

Time t o  
F rac tu re  

(min. ) 

3 .0  
2.7 
8.0 

- 
0.34 
1.0 
4.0 
6.0 

16. 0 

14 
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f rom the sur face ,  deposited with carbon a t  a 90 degree angle, and shadowed 

with chrome at a 45 degree angle. 

leaving the final Cr-C replica,  which was carefully placed on electron mioro-  

scope gr ids .  

The parlodion was then dissolved in acetone 

The profile of f rac ture  faces was prepared by cleaning the tes t  

sample in distilled water ,  plating the fracture  surface by immers ion  in a 

nickel plating bath, microsectioning and replicating the polished and etched 

section. 

solution. 

a ture  was  190 to 195OF. 

replication of the polished and etched surface was the two- stage carbon-plastic 

method s imi la r  to d i rec t  repl ica .  

to  200 m e s h  copper gr ids  placed at the desired c rack  zone. 

gr id  and plastic were  stripped from the mount with scotch tape, the gr ids  were 

removed, the negative replica deposited with carbon, shadowed with chromium, 

and the parlodion dissolved in acetone leaving the final Cr-C replica.  

The electroless  nickel bath was a commercial  Enthone type 410B 

The bath acidity was adjusted to  pH 4. 3 to 4. 5 ,  and the bath temper-  

The plate thickness produced was 0.0025 inch. The 

The 57'0 parlodion in amyl acetate was applied 

After drying, the 

Figure 8 shows a two-stage Cr -C  repl ica  of an all-beta type alloy 

(Ti-  13V- 11Cr-3A1) notched specimen failed under static s t r e s s  in a i r .  Similar 

micros t ruc ture  was noted in samples  fractured in distilled water  and salt  solu- 

tion. The  f rac ture  face is virtually all  dimpled s t ruc ture ,  indicative of ductile 

failure.  

Figure 9 shows the fracture  face of an alpha-beta alloy, Ti-6A1- 

4V, f rac tured  in s t r e s s  cracking in air. 

dimpled s t ruc ture  virtually throughout the surface,  with some intergranular  

f r ac tu re  facets .  

solution. 

cleavage a r e a s  (a r row A) a r e  identified by r iver  markings.  

( a r row B) a r e  character ized by large dimples with deformation markings o r  

The f rac ture  face exhibits ductile 

Figure 10 is the fractured face in s t r e s s  corrosion in salt 

The surface exhibits mixtures of cleavage and ductile regions. The 

The ductile a r e a s  

serpent ine glide and ripples on the surface.  ( 6) 

Attempts have been made to re la te  the cleavage a reas  to micro-  

s t ruc tu re  by etching the f rac ture  surface before  making the fractograph. This  

method has  been successful in studying the hot salt  s t r e s s  corrosion of titanium 

alloys.  (7) During etching many of the fracture  features  a r e  removed. Figure 11 
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shows that with sufficient etching beta  is  revealed (compare Figure 11 with an 

unetched f rac ture  such a s  Figure 10). In these experiments we have not yet 

taken fractographs f rom the same a r e a  before and after etching. 

Figure 11 does suggest one significant result .  

which exhibits cleavage markings.  

However, 

Arrow A points to a beta phase 

Profile c r o s s  sections of the f rac ture  edge were  made of the 

Ti-6A1-4V alloy failed in air and in salt solution. 

12) indicated t ransgranular  ductile rupture and distortion of alpha. 

f rac ture  in  salt solution (Figure 13) indicated that the c rack  path appears  to 

follow alpha-beta phase boundary by cleavage, and rupture is possibly not 

taking place through the beta phase. 

reported by Beck") that failure in  'Ti-8AI-lMa-1V alloy under SCC condition occurs  

by apparent cleavage in the alpha-phase and ductile failure of the beta phase. 

It is apparent that hydrogen segregation in the beta  phase as demonstrated in 

Section 2. 2, might be associated with the type of cleavage failure of the alpha- 

beta  phase boundary descr ibed here .  

of great  benefit in clarifying the nature of cleavage. 

The f rac ture  in air (F igure  

The 

This observation is contrary to the resu l t s  

Further  work along these l ines will be 

The f rac ture  faces of the Ti-8A1-1Mo-1V alloy failed in distilled 

water  and salt solution exhibited s imilar  morphology to the Ti-6A1-4V alloy. 

F igures  14.and 15' show mixtures of local cleavage and ductile rupture a reas .  

There  was  also some evidence of intergranular f rac ture  regions for  this alloy. 

The f rac ture  surface of the alpha type alloy, Ti-5A1-2. 5Sn, failed 

in air, is shown in Figure 16. 

rupture  (a r row A), and some evidence of (serpentine) glide and deformation 

markings (a r row B),  charac te r i s t ic  of ductile f racture .  (6) The microf rac-  

tograph of specimens failed in distilled water  showed predominantly ductile 

rupture  with some local cleavage a reas  (F igure  17). The salt water  s t r e s s  

cor ros ion  f rac ture  face exhibited much l a rge r  a reas  of cleavage distributed 

throughout the surface,  a s  i l lustrated in Figure 18. 

The fracture  face predominantly shows dimple 

Also examined were  profile c ros s  sections of the alpha alloy, 

Ti-5Al-2. 5Sn, failed in a i r  and salt  solution. 

granular  f rac ture  in air with distorted alpha grains .  

cation that the f rac ture  path followed along alpha grain boundaries where 

Figure 19 shows ductile t r ans -  

There  was some indi- 
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F i g u r e  8.  E lec t ron  F rac tog raph  of Beta  Alloy Ti-13V- 11Cr-3A1 
F r a c t u r e d  in  Air. Note dimple rup tu re .  Magnification 
7 , 5 0 0 X .  

SM-4910 -Q 3 19 
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F i g u r e  9 .  E lec t ron  F rac tog raph  of an  Alpha-Beta Alloy Ti-6A1-4V 
F r a c t u r e d  in Air .  
7 ,500X.  

Note dimple rupture .  Magnification 

I S M-49 105 -Q 3 
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F i g u r e  1 0 .  E lec t ron  F rac tog raph  of S t r e s s  Cor ros ion  Region of 
Ti-6A1-4V Frac tu red  in  370 Salt  Solution. F r a c t o g r a p h  
shows a mix tu re  of c leavage (Ar row A) and ductile 
fa i lure  (Arrow B) .  Magnification 7 ,  500X. 

2 1  
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F i g u r e  11. Elec t ron  F rac tog raph  of S t r e s s  Cor ros ion  Region 
of Ti-6A1-4V Frac tu red  in 37'0 Sal t  Solution. F r a c -  
t u r e  has been etched for  15 seconds in  HF-"03- 
H 2 0  solution. Arrow points to be t a  phase exhibiting 
cleavage markings.  Magnification 7 ,  500X. 

SM-49 105 -Q3  
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F i g u r e  12 .  Prof i le  of F r a c t u r e  Edge  of Ti-6A1-4V F r a c t u r e d  
in Air .  
rup ture .  Magnification 7 ,  500X. 

Micrograph shows t r ansg ranu la r  ducti le 

SM-49 1 05 -Q 3 23 



Figure  13. P ro f i l e  of F r a c t u r e  Edge f rom S t r e s s  Cor ros ion  
Region of Ti-6Al-4V F r a c t u r e d  in  370 NaCl Solu- 
t ion.  
boundary by cleavage (Ar rows) .  Magnification 
7 ,500X.  

F r a c t u r e  propagated along an alpha-beta 
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F i g u r e  14. E l e c t r o n  F rac tog raph  f r o m  S t r e s s  Cor ros ion  Region 
of Ti-8A1- 1Mo- 1V F r a c t u r e d  in  370 Sal t  Solution. 
F r a c t o g r a p h  shows duct i le  rupture  (Ar row A), 
cleavage (Arrow B )  and evidence of i n t e rg ranu la r  
f r a c t u r e  (Arrow C ) .  Magnification 7 ,  500X. 
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F i g u r e  15. 

SM-49 105-Q3 

E l e c t r o n  F rac tog raph  f r o m  S t r e s s  Cor ros ion  Region 
of Ti-8A1- 1Mo- 1V F r a c t u r e d  in Dist i l led Water .  
F rac tog raph  shows ductile rup tu re  (Ar row A), 
c leavage (Ar row B ) ,  and evidence of i n t e rg ranu la r  
f r a c t u r e  (Ar row C ) .  Magnification 7 , 5 0 0 X .  
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F i g u r e  16. E lec t ron  F rac tog raph  of A i r  F r a c t u r e d  Surface of 
Ti-5Al-Z.5Sn. Frac tograph  shows dimple rupture  
(Ar row A), and glide cha rac t e r i s t i c  of ductile 
f r a c t u r e  (Arrow B) .  Magnification 7 ,  500X. 

SM-49 105-Q3 
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F i g u r e  1 7 .  E lec t ron  F rac tog raph  f r o m  S t r e s s  Cor ros ion  Region 
of Ti-5Al-2.  5Sn F r a c t u r e d  in  Dist i l led Water .  Most 
of the f r a c t u r e  exhibits ducti le fa i lure  (Ar row A) in  
i t s  local  c leavage a r e a s  dis t r ibuted throughout 
( A r r o w s  B) .  Magnification 7,500X. 

S M - 4 9 1 0 5 -Q 3 
I 

28 



F i g u r e  

SM-49 105 -Q3 

. Elec t ron  Frac tograph  f rom S t r e s s  Cor ros ion  Region 
of Ti-5A1-2.5Sn F rac tu red  in 370 NaC1. 
shows cleavage a r e a  (Arrow A). 
exhibits ducti le fa i lure  with these loca l  cleavage a r e a s  
dis t r ibuted throughout. Magnification 7 ,  500X. 

F rac tog raph  
Most of the f r a c t u r e  

2 9  



F i g u r e  19 .  Prof i le  of F r a c t u r e  Edge of Ti-5A1-2.5Sn F r a c t u r e d  
in  A i r .  
and Arrow B shows fa i lure  along an  alpha-beta 
in t e r f ace ,  Magnification 7,  500X. 

Arrow A shows deformed region of alpha, 
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F i g u r e  20. P r o f i l e  of F r a c t u r e  Edge in S t r e s s  Cor ros ion  Region 
of Ti-5Al-2.  5Sn F r a c t u r e d  in  370 NaCl Solution. 
th i s  region (Arrows A), f r a c t u r e  propagated along a n  
alpha-beta  in te r face .  
in alpha g ra in  boundar ies .  

In 

Beta  par t ic les  w e r e  precipi ta ted 
Magnification 7 ,  500X. 
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retained beta  was formed.  

l e s s  distortion of the alpha phase, and cleavage along the alpha-beta boundaries 

(Figure 20). 

l a rge r  in s ize  than the retained beta  phase observed in the profiles; however, 

in distilled water the cleavage a reas  a r e  comparable in size with the retained 

beta. 

role  in their  cleavage behavior. 

content may elucidate the role  of local cleavage regions in  SCC. 

Specimens fractured in the salt solution exhibited 

The cleavage a r e a s  f rom salt solution f rac ture  a r e  considerably 

The segregation of hydrogen in these local regions appears  to play a 

Further  work with alloys at different hydrogen 

2.5 Electrochemical Measurements 

To  elucidate the effect of the hydrogen content of titanium alloys 

on the electrochemical behavior,  fur ther  polarization experiments were con; 

ducted with the alpha type alloy, Ti-5A1-2. 5Sn, in  oxygenated 370 NaCl solution 

a t  pH 6.5.  (1) as received with 

61 ppm hydrogen, and ( 2 )  vacuum annealed (10 

with 39 pprn hydrogen. 

Two types of alloy specimens were employed: 
- 6  t o r r )  at  1400°F for  24 hours 

An examination of the polarization curves (F igures  21 and 22) 

indicated the following: 

2. 

1. The r e s t  potential of the alloy in unstressed condition was 
shifted in the electropositive (noble) direction with increased 
hydrogen content (from -0.4V for 39 ppm, to -0.2V for 61 
ppm), and the anodic branch in the passive region was reduced 
in width. 

Stressing to 80% of yield s t r e s s  did not change the polariza- 
tion curve in  the passive region of the alloy with low hydrogen, 
but lowered the corrosion cur ren t  ( f rom about 0 . 0 2  to 0 .003  
ma/cm2)  in the passive region of the alloy with high hydrogen. 
Cathodic polarization branches were essentially the sarqe. 
The anodic polarization branches in  the t ranspassive region 
differed greatly,  with the hydrogen content suggesting other 
complicated side reactions.  
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- 0 . 8  - 0 . 4  0 0.4 0 . 8  1 . 2  1. 6 - 1 . 2  
P o t e n t i a l  ( V o l t s )  V s .  S .  C.  E.  

c a w r  

Figure  21. Polarization Curves of Ti-5A1-2.5Sn Alloy 
in Oxygenated 3% NaC1, pH 6 .5  
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Figure  22. 

0 Unst ressed  

0 St re s sed  80% Y . S .  
Y . S .  = 130 K s i  

Apparent A r e a  = 0 . 5  cm 2 

1 
I 
I 
I 
I 

2 
8 - 0 . 4  0 

Ti-5A1-2.5Sn (Vacuum 
Annealed) ( 3 9  ppm Hz) 

Potential (Volts) V s .  S. C .  E 

Polarization Curves of Vacuum Annealed Ti-5A1-2.5Sn 
Alloy in Oxygenated 3% NaC1, pH 6 .5  
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3.0 CONCLUSIONS 

The following conclusions can be made on the war- accomplished during 

the third quar te r .  

Electron microautoradiography work clear ly  demonstrated that hydrogen 
3 gas in quantities l e s s  than 50 ppm (in radiotracer  form H ) introduced into 

titanium alloys is preferentially segregated in beta  phase in-alpha-beta type 

alloys, o r  alpha grain boundaries in alpha alloys, and is unliformly dispersed 

in all beta  type alloys. 

Precracked  notched alpha type Ti-5A1-2.5Sn and duplex annealed alpha- 

beta type Ti-8Al-1Mo- l V ,  and Ti-6A1-9V alloys exhibited lower resis tance to  

SCC in aqueous salt solutions whereas  beta type Ti-13V-l lCr-3Al did not 

exhibit a noticeable effect. 

All beta type alloys exhibit ductile dimple micros t ruc ture  in fracturing 

Alpha-beta and alpha type alloys exhibit mixtures  of in  air and salt solutions. 

ductile dimple and brit t le cleavage a reas  in f rac ture  faces .  

a r e a s  a r e  much l a rge r  in s t r e s s  cracking in  aqueous salt solutions, compared 

to air fracturing. 

The cleavage 

The s t r e s s  corrosion c rack  paths propagate, in general ,  t ransgranular ly  

through alpha grains  but follow by cleavage to the alpha-beta phase boundaries. 

The segregation of hydrogen in the beta phase appears  to play a role  in this 

brit t le behavior of the beta regions. 

The reduction of the original hydrogen content in the alpha alloy Ti-5A1- 

2.5Sn f r o m  60-70 to 30-40 ppm did not seem to affect drast ical ly  the s t r e s s  

intensity parameter  in aqueous salt  solutions, as observed by H ~ w e ' ~ )  with 

alpha-beta alloys. 

changes appear to occur ,  as i l lustrated by the lowering of corrosion cur ren t  

in  the passive region by s t ress ing  alloys with increased hydrogen content. 

The resul ts  a r e  preliminary and some electrochemical 
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1 .  4 . 0  F U T U R E  W O R K  

Electron microautoradiography studies will be ca r r i ed  out with 

tr i t iated alloy samples to evaluate the effect of s t r e s s  on hydrogen distribu- 

tion. 

More electron fractography studies will be  conducted with alpha-beta 

alloys to demonstrate the mode of propagation of the c rack  path. 

The s i tes  of local dissolution of the titanium alloy mat r ix  will be 

evaluated by  t ransmission electron microscopy. 

suitable for  t ransmission of an electron beam-will  be prepared.  

will be examined, and then dipped in distilled water  o r  salt solution and r e -  

examined to evaluate preferential  attack. 

Thin foils of titanium alloys 

The foils 

Polarization measurements  will be conducted with alpha-beta alloys 

to clarify the effect of s t r e s s  on reaction rates .  
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